
A Fresh Graduate’s Guide to Software Development Tools and Technologies

Chapter

 Software Delivery

CHAPTER AUTHORS

Huang Shihong

Leow Ruishen

Peter Hans Martin Helldahl

Srajna Lath

13

Software Development Tools and Technologies

2

Ch13: Software Delivery

3

CONTENTS

1 Introduction .. 5

2 Software Portability ... 8

2.1 Java as a ‘portable’ technology ... 8

2.2 Bytecode Distribution ... 8

2.3 JAR Archives .. 9

2.4 Applets .. 10

2.5 Natively Compiled Applications ... 10

2.6 Portability – Concluding Remarks ... 10

3 Installation .. 11

3.1 Installation on Windows ... 12

3.2 Installation on Linux ... 12

3.3 Installation on Mac OSX Snow Leopard .. 12

4 Package Management Systems ... 13

4.1 Package Management System versus Installers .. 14

4.2 Package management on Windows .. 15

4.3 Package management on Linux .. 17

4.4 Package management on Mac OS .. 19

5 Conclusion ... 22

Software Development Tools and Technologies

4

Ch13: Software Delivery

5

1 INTRODUCTION

As programmers we are greatly concerned with creating new and interesting software but while
developing, we often overlook the next steps, making the software deliverable and delivering it.
This chapter discusses issues related to packaging the different parts of a software product into
a single unit (e.g. an installer) and the mechanisms of delivering that unit to the end-user
digitally.

Consider a mail delivery system. We write a letter on pieces of paper, put them in an envelope,
add a stamp, address etc and post the letter. The postman manages the letter and if everything
is in order the mail letter is delivered to the intended receiver’s letter box.

The pages of the letter are like the different elements of our software product and the envelope
is these different elements packaged together in order to make the software deliverable. The
software equivalent of the postal system that delivers the letter can be called a software
delivery system. Just like the letter box receives the letter, a package management system
receives software products in our computers. However this mapping is sometimes not ideal, as
package management systems also act as distribution systems. The envelope, stamp and the
address is what makes the letter deliverable through the system, and these are like the
distribution specifications. Similarly, we have to package the software in a certain way to make
use of the software delivery system and the package management system. Another part of this
system would be configuration which will not been covered within the scope of this book. That
would be like your settings at home that you may change based on the instructions in the letter,
to stretch the analogy and try to fit the system as much as we can. The table below summarizes
the analogy.

Postal System Software Packaging and Delivery System

Pages Elements

Envelope Packages

Postman Package Management System

Settings Configuration

Windows

 Elements are dll files, registry edits etc.

 Package is an installer.exe.

Although MSI format could be considered as a package, it isn’t absolutely correct
since it is common practice to use an installer.exe to bootstrap packages such as
MSI format. Bootstrapping will be further explained in follow chapter 3.1.1.

 Package Management System is ‘Control Panel\Programs\Programs and Features’ which

you use to uninstall and repair your programs.

Mac

 Elements are .bundle bundle files, .pkg package files, .plist property list files, and .dist

distribution specification files.

 Package is a disk image file.

 Package Management System is Apple’s AppStore.

 Delivery system is Apple’s AppStore.

Linux

Software Development Tools and Technologies

6

 Elements in a tarball are uncompiled source code.

 Package is the tarball itself.

 Package Management System is for example RPM Package Manager.

 Delivery system is Advance Packaging System, Ubuntu Software Store.

INSTALLERS

Within the scope of this chapter we discuss the issue of Software Portability, writing software
that can run on multiple platforms and its trade-offs. We use Java as an example as it covers
multiple methods of portability. In the mail delivery metaphor, it is like writing letters that can
be easily transported. We also discuss packaging software using Installers where a
programmer can choose to manage the resources and the user can use the software by installing
it. It is like creating an envelope for your software so that the delivery system does not have
access to the data inside.
Next we discuss Package Management Systems (PMS) that are used by the operating systems
to manage all the applications, software and resources while at times also being used for
distributing. PMS are like the Post Office and Postmen. To better explain the role PMS can play as
distributing system we use the example of App Store and explore the workings of such a PMS.

In the final topic, we will delve deep into the whole process of installation, and
discuss Registries or local software information databases on different operating systems.
Knowledge of Registry, its structure and Hives, is one of the most important things an installer
programmer needs to know. Programming an installation is non-trivial as it requires very
specific knowledge on where certain files are placed and how certain registry entries are
updated. We will discuss that in detail in this topic. Registries are sort of like the Address Field in
your envelope.

Let us look at some key characteristics of each operating system to understand better how the
portability, installation and delivery works for each of them.

The latest version of Windows is a Windows NT family
operating system titled Windows 7. It is programmed in C,
C++ and assembly code, and features hybrid kernel. Its design

Ch13: Software Delivery

7

supports the IA-32, x86-64 and the Itanium platform. You can deploy both 32-bit and 64-bit
software on Windows 7. Windows versions have good backward compatibility with older
software, and many software written for Windows can have good forward compatibility, unless
the software is specifically written for a particular version Windows, which is uncommon.
Software developed specifically for windows often use the Windows Presentation Foundation
(WPF) or the Windows API. As many computer games make use of Windows’ powerful DirectX
API, they are also Windows exclusive.

The current version of the Apple Macintosh OS in use today is the Mac OS X version
10.6.6 Snow Leopard, with 10.7 Lion in sight for a 2011 release. Mac OSX is a Unix-
based operating system written in C, C++ and Objective-C, with a kernel based on the
Mach microkernel.

Apple develops its OS in line with the hardware it produces, and this revision of Mac OSX is
developed with the new line of Mac machines featuring Intel based CPUs in mind. Support for
Mac OSX is thus limited to IA-32 and x86-64, and IBM PowerPC processor based Macs are no
longer supported. On machines with 64-bit processors, Snow Leopard built-in applications will
run in 64-bit, and the OS will become a 64-bit OS. Programming applications for Snow Leopard
in 64-bit is recommended but not necessary. Most native applications written for Snow Leopard
are written in Objective C, and use the Cocoa interface API. The most popular, and Apple
supported, IDE used to develop Snow Leopard applications is the XCode IDE. Deploying
applications for any Mac OS requires the programmer to be registered as a developer, and an
annual fee is applicable. This may partly explain the paid-app trend for third party apps for Mac
OS. Programs written for most Mac OS have relatively poor forward compatibility and will
usually require updating with each new release of the OS. Mac OSX enjoys limited backward
compatibility, some of which is artificially implemented by Apple to encourage users to upgrade
their systems.

Linux is not a single operating system. It is a family of Unix-like operating system
using the monolithic Linux kernel. Linux is programmed in Assembly Language
and C, and has wide-ranging hardware support including mobile devices, and
servers. It supports a plethora of platforms including the PowerPC, x86, Itanium,
ARM for mobile devices, and even TILE64. As a result, some programmers like to
test a software they will make portable, on the Linux platform first. For example,

Adobe’s 64-bit version Flash was first previewed on Linux, before a partnership with Microsoft
allowed a similar preview version to be quickly available for 64-bit Internet Explorer 9. Linux is
packaged for use in a format known as Linux Distribution (distro) for desktop and server use.
Some examples of Linux Distros include Debian and its derivatives such as Ubuntu, and Fedora.
Linux’s extensive support for programming languages means that programmers have a lot of
languages and tools to choose from including C++ and Java. However the two main frameworks
used to develop Graphic User Interfaces for Linux are GNOME and KDE. Software portability on
Linux can be largely dependent on its distro, but in general for each distro, the OS’ ability to
allow software backward and forward compatibility is strong, and little work needs to be done
to keep the software up to date.

The bottom line is that programmers today enjoy significant flexibility when it comes to
programming for software, and making software portable because of the streamlining of
hardware and OS architectures. The IBM x86 architecture and its widespread adoption helped
move programming portability to what it is today. Modern programmers can even write codes
that can be run on multiple OS without the need to modify any code, and in the next section, we
will discuss the Java programming language, which, thanks to its design, has achieved such a
level of portability, with “Write Once, Run Anywhere” being its slogan.

Software Development Tools and Technologies

8

2 SOFTWARE PORTABILITY

Software portability refers to the coding feature that allows programmers to reuse existing code
instead of creating new code when moving the software from an environment into another.

Software portability has been described as a desirable attribute for the vast majority of software
products (Mooney, 1997). The benefits of software portability are that users can switch
platforms or operating systems and still be functional, e.g. software made for an older platform
does not have to be changed after each new release. Making your software portable should not
be overlooked since it can prove be your software’s success.

To achieve portability you need to think about a number of aspects, both platform and operating
system (OS) related and hardware related. This section will primarily cover OS related issues,
and will also briefly discuss hardware portability issues, but leave the details for computer
engineering texts.

2.1 Java as a ‘portable’ technology

Java is a programming language developed by James Gosling at Sun Microsystems,
now a subsidiary of Oracle Corporation, and released in 1995 as part of Sun’s Java
platform. Although much of Java’s syntax were derived from C and C++, it is
architecturally much more similar to NeXT’s Objective-C programming language.
Java is licensed under GNU GPL. The current Java release is the Standard Edition 6.

In this section, we will cover the four main ways Java distributes its code and
applications. These four ways are through its own bytecode, through a collection
of bytecode known as Java Archives (JAR), embedded on webpages as Java applets,

and finally, as natively compiled, platform dependent applications. In all these distribution,
software installation will not be covered; all four distribution methods do not require the end
user to do any installation work.

2.2 Bytecode Distribution

In the previous section, we discussed OS briefly and highlighted some of the key, unique
features of each OS that makes portability an issue. We recognize that to remain a portable, a
program has to be careful with the tools it uses, sometimes right down to the choice of
programming language.

It is particularly important to note the specific APIs that are available for each platform, and
whether the software is using them. If the software that is meant to be portable for multiple
platform uses platform specific tools, the result could be a non-portable, platform specific
software, or a software that is only partially portable, requiring parts of it to be rewritten for a
new platform. This traditional model of developing software for multiple platforms is a problem
we recognize as “many code for many platforms”. Figure 1 on the next page illustrates this
phenomenon.

Java provides a mechanism to counter this problem. In Java, programmers can write a single
bytecode and expect it to run on Windows, MacOS and Linux. Programmers can technically
create write code on a Linux platform and have it run on MacOSX. This portability is what the
Java slogan “Write Once, Run Anywhere” refers to.

Java counters this problem through the use of an additional, intermediate layer for platform
portability, known as the Java Virtual Machine (JVM). The JVM provides a virtual machine model
for software programs and data structures to be executed on. A virtual machine, originally
defined by Popek and Goldberg (2005) as an “efficient, isolated duplicate of a real machine”, can
be seen as a software emulation of a programmable machine. This chapter will not discuss the
details of virtualization, which can be found extensively covered in other books on computing

Ch13: Software Delivery

9

science. However, this model allows Java to have a standardized environment for its bytecode to
run, no matter what environment the host machine is in.

In addition, the JVM also provides a layer of safety to Java code and Java programming, as it
becomes almost impossible to “crash” the host machine if the Java code is running on a virtual
machine. The JVM also verifies the bytecode before execution, using three types of checks:

 Branches always lead to valid locations.
 Data is always initialized and references are always type-safe.
 Access to “private” and “package private” data and methods is rigidly controlled.

This helps JVM ensure that the bytecode input can run error-free and the Java maintains its
safety. With the JVM, Figure 1 becomes Figure 2, as shown below.

Figure 1 - Many Code, Many Platform Figure 2 - Java Virtual Machine

Java’s execution environment is known as the Java Runtime Environment (JRE) which also
includes the JVM. The JVM runs both Java bytecodes and Java Archives, emulating the JVM
instruction set by interpreting it. JRE is available for download at Java’s homepage at
http://www.oracle.com/technetwork/java/javase/downloads/index.html and all machines and
users who want to run Java applications need to have a copy of JRE installed.

2.3 JAR Archives

Java Archives (JAR) aggregate many Java bytecode files into one. You can think of it as a ZIP
archive, except it is for Java bytecode files, and also has one important characteristic. That is,
JAR files have a mechanism to check if the JAR is a runnable JAR or a non-runnable JAR. A
runnable JAR means that, within the package, there is a main class, and a non-runnable JAR
simply means that there are no entry points. JAR files maintain this information through the use
of a single file within the JAR archive, known as the archive manifest. The Manifest file for any
JAR archive can always be found in its META-INF folder, and it is always named MANIFEST.MF.
The file can be accessed and editied with any text editing tool such as Notepad. This file is
unique, and only one of them can exist in a JAR file. The Manifest contains information on the
archive relating to its class dependencies as well as version information. We will discuss version
control in greater detail in the section on Package Management Systems.

Figure 3 - JAR Archives

JAR archives provide Java with a way to distribute collections of bytecodes and their
dependencies without having to distribute them file by file. JAR also maintains the integrity of

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Software Development Tools and Technologies

10

these dependencies, making JAR archives ideal as distribution medium for software and
programmer libraries to be used in other software.

2.4 Applets

Applets embedded on webpages are one of the original design aims for Java, as Sun predicted
that the web and embedded devices will become more popular very quickly. Applets are simply
tiny applications written in Java, meant to run on the user’s web browser. These programs all
require the JRE to run.

Figure 4 - Simple Java AWT Applet

2.5 Natively Compiled Applications

The advantage of the JVM is that it provides a platform for portability. The disadvantage is that
it can cause the software to run quite slowly, especially compared to programs written in C.
Although there are currently just-in-time compilers that can help to address the issue, such as
the HotSpot (http://openjdk.java.net/groups/hotspot/), it can still be helpful, for very
demanding programs, to not have to address the problem at all. This is where natively compiled
Java applications come in.

Natively Compiled Java applications are Java code compiled using a Native Compiler. The Native
Compiler compiles the code into an application that can be accepted, read and run for the given
platform. For example, for windows, a “.exe” file might be generated. This application does not
require the JRE or the JVM to run, as it is already readily acceptable by the platform. The result
is code that runs faster and without the need for a JVM. Some examples of Native Compilers are
available on the internet, such as JavaNativeCompiler (http://jnc.mtsystems.ch/) and GCJ
(http://gcc.gnu.org/java/).

Of course, Natively Compiling Java codes are not without drawbacks. First and foremost,
portability is sacrificed for performance. In addition there are also complications when the
program is designed to be dynamic. For example, if there are classes in the application that
loads only at runtime, these classes are now unavailable to the programmer.

For more information on natively compiling Java code, please refer to an Excelsior article by
Dmitry Leskov (2009) available here: http://www.excelsior-usa.com/articles/java-to-exe.html

2.6 Portability – Concluding Remarks

We see, using the above example, that Java go to great lengths to achieve its level of
compatibility. Recall that software portability is concerned with reusing as much of existing
code as possible whilst porting the software to different platforms. We have also discussed
briefly the major operating systems and how they behave, and what are some characteristics
that are unique to them. The problem for us now is how do we use these information.

This section showed you the importance of software portability, so that you as a software
developer can decide if portability for your software is an issue important enough to consider
portability platforms. In the case of Java, it was important enough for them to develop the JVM

http://openjdk.java.net/groups/hotspot/
http://jnc.mtsystems.ch/
http://gcc.gnu.org/java/
http://www.excelsior-usa.com/articles/java-to-exe.html

Ch13: Software Delivery

11

just to make their code more portable. If you are developing games that extensively takes
advantage of Windows’ DirectX API, and there is no real reason for your software to also be
compatible with other OS, then you can choose to develop on Windows, which can make your
software run faster.

As a programmer, your choice of development tools can affect your program’s portability.
Choose the wrong tool, and you will realize that much of your code needs to be rewritten when
the software gets moved to a new platform.

This section covered portability without installation. In the next section, we will discuss
installation.

3 INSTALLATION

In the previous section we discussed software portability. In this section we will be talking
about software installation. Installation is simply defined as the act of putting a computer
program onto a computer system so that it can be executed. In this section we will explore
software installation through installers for different platforms, and discuss how they work in
greater detail.

An installer is a small program that helps guide you through the setup of the application that
you want to install. This program unpacks compressed data included with the installer and
writes new information to your hard drive.

Although some software can be executed without an installation procedure most programs
require an installer since they need certain resources in order to run. These resources must be
properly managed, and the software installer manages this for you in a convenient way.

Some of these resources include:

 Unpacking of files supplied in a compiled format

 Organizing the files in folders

 Providing information about the program to the operating system

 Make changes to the registry

 The program might need additional software to be installed in order to run.

o These can be defined as requirements in the installer.

o The installer can search for them, then do an automatic download and

installation as necessary.

 Modify registry key entries and environment variables

The installer also allows you to choose which parts of the program you want to install and
protects your source files from unwanted modification. If the program cannot be installed

Software Development Tools and Technologies

12

successfully, or if the user cancels the installation, the installer can roll back changes and restore
the computer to its original state.

During the installation of computer programs it is sometimes necessary to update the installer
itself. This is made possible by a technique called bootstrapping. The common way to do this is
to use a small executable file which updates the installer and starts the real installation after the
update. This small executable is called a bootstrapper.

3.1 Installation on Windows

Installation of programs on windows is usually done by double-clicking the installer executable
icon and following the instructions.

An example of a windows specified installer is Windows Installer. It is a software
component used for the installation, maintenance, and removal of software on
modern Windows systems. The installation information is packaged in .msi files. MSI files might
install the application straight into the system. However, this process does not verify the system
environment. Thus user may experience difficulties using the application which installed by
setup.msi, as it may not be compatible with user’s operation environment. Common practice
today is to wrap up MSI files with an executable bootstrapper such as setup.exe. The
bootstrapper will start and check the system environment before actual installation begins. MSI
files will then be executed only is the system is capable of running the application.

The Windows Installer contains a number of feature upgrades compared to its predecessor, the
Setup API. Key changes include an automatic generation of an uninstallation sequence, as well
as a GUI framework. Microsoft encourages third parties to use Windows Installer as the basis
for installation frameworks, so that they synchronize correctly with other installers and keep
the internal database of installed products consistent. Some features such as rollback and
versioning depend on a consistent internal database to work properly.

3.2 Installation on Linux

The two most common methods of installing software on LINUX are RPM and tarballs. RPM
stands for RPM Package Manager (originally Redhat Package Manager) and we will be covering
this in greater detail in Package Management Systems. A tar ball is an archive of files, similar to
a Zip file on windows. These mostly contain programs in source-code. After unpacking you will
need to find the README file or INSTALL and read its instructions for installation. Very often,
you will have to compile the source-code yourself in order to turn the source-code into an
executable binary.

Compiling from source-code can be quite tedious, but there are good reasons for doing so. For
example, you may want to customize program features and install paths. Self-compiled
programs are usually even more stable and faster than precompiled ones because after the local
compilation process they achieve greater compliance with your system settings. Upgrading is
easier since you can simply apply a patch and recompile. But because this process can be
complicated, especially to regular users who may not be familiar with source code and
compilling, the method remains largely unpopular with a majority of computer users.

3.3 Installation on Mac OSX Snow Leopard

Many software installers and updaters are disk image (.dmg) files and basically functions like an
actual CD image file. The purpose of the .dmg file is compression since the formst can greatly
reduce the size of the files. Running .dmg files on Snow Leopard is similar in concept to
Windows Installers; users simply need to double click on the .dmg file to begin the process.
When this is done, Snow Leopard will “mount” the image, using a metaphor similar to a cd
image, and an installer window will usually appear that will take care of the rest of the
installation for you. If there are no installer windows, a window will usually appear showing the

Ch13: Software Delivery

13

contents of the image, and one of them is usually an installation package. Running that package
by double clicking it will begin the process.

If there is no installer window and no installer when you mount the disk image, simply install
the software by dragging and dropping the file or folder from the disk image to the Applications
folder. These types of files already have all the necessary files pre-installed and don't require an
installer to install it.

4 PACKAGE MANAGEMENT SYSTEMS

A software package is distribution of files which usually in archive format and contain computer
software, application and data to be installed by Package Management System (PMS) or other
means which mostly involves a self-sufficient installer. For example, most of Windows packages
will be in forms of installers which are able to run on their own. Linux packages are distributed
in forms of archives of either uncompiled source code or pre-compiled binary files require PMS
for further action. Not known to many, Mac OS packages are merely a bunch of folders, each
containing data files for the application to work, disguised as a single file. Such folders are
completely different from those directory folders. All packages also contain many other
information, like their purpose, description, version and vendor etc. which are called metadata.
Such metadata will be stored in local package database maintained by PMS, which will then use
these data to perform software update and prevent certain potential problems such as missing
software prerequisite and dependency mismatch.

A Package Management System (PMS) is, according to Ian Murdock Package “the single biggest
advancement Linux has brought to the industry”, that it blurs the boundaries between operating
system and applications, and that it makes it “easier to push new innovations ... into the
marketplace and ... evolve the OS”. (2008) A PMS is usually made up of a series of distinct
software tools to consistently manage and automate the process of installing, upgrading,
configuring, and removing of software packages for a specific operating system. Many could
take PMS as a convenient way of managing software packages. With growing numbers of
packages, especial in Unix like system which consists hundreds even thousand package
components, a PMS will be essential for both user and the system to operate on the platform.

Package management systems are charged with the task of organizing and managing all of the
packages installed on a system and the system resources. A PMS typically:

 Verifies file checksums to ensure correct and complete packages.

 Verifies digital signatures to authenticate the origin of packages.

 Applies file archivers to manage encapsulated files.

 Upgrades software with latest versions, from a software repository.

 Organizes packages to achieve cross platform similarity and normalization.

 Facilitates easy installation and uninstallation and at times provides front end for locally

compiled packages.

Some other features of the PMS that is important for creating deliverable software are:

Resolving Conflicts and Dependencies: Many programs share dependencies, that we would not
want to install by default each time a new software requests for it. Before installing the package
the PMS checks the resources it uses and takes care of the dependencies if they are not already
installed.

During software installation and execution there might be conflicts that are needed to be
resolved by the PMS. For example software needs a perl interpreter to run but at the time of
execution the file the interpreter is not at the default path. To resolve this PMS maintains

http://en.wikipedia.org/wiki/Linux

Software Development Tools and Technologies

14

registry entries and command name registries so that the file can be accessed using a single
standard path which will point to the new location of the file even if the file is shifted. Any such
conflict can arise when search paths for C headers are not in the same order as the C libraries.

Conflict also arises when two software are dependent on different versions of the same
application. PMS needs to save both the versions of the software that will essentially have the
same name in the probably in the same folder, in case of Windows the C:\Programs Files. To
solve this, the PMS has different registry entries for both the versions therefore identifying them
as different applications.

Maintenance of configuration: As PMS in UNIX are essentially extensions of file archiving
utilities, they can usually only overwrite or retain configuration files, rather than applying rules
to them. Hence this may create some problem with updating configuration files especially if the
new configuration file follows a different format. Problems can be caused if the format of
configuration files changes.

For instance, if the old configuration file does not explicitly disable new options that should be
disabled. To resolve this, the PMs would sometimes completely remove the old configuration
before installing the new one.

4.1 Package Management System versus Installers

PMS often involves in installation process. Thus, confusion arises between installer and PMS.
There are few key points where we can draw a clear differentiation between both of them.

Package Management System Installer

Typically integrates with the operating system Comes with bundled product

Uses a single installation database Performs its own installation

Examines and manages all packages on the

operating system

Does not work with packages outside its

bundled product

Single/Specific package format Multiple installation formats

Table 4-1

As mentioned in the previous chapter, different OS will require different package and
installation method, thus different package management system will be required. Earlier,
package management system was typically part of OS, and due to the commercial property of
the OS, the functions of package management system were limited to packages having same
vendor as itself. To satisfy consumer needs, many third party PMS are developed and many new
functions emerged.

OS

Typical install method Installer dialogue Command line Drag and Drop

Typical package type Installer Rpm, tarball Installer, DMG

http://en.wikipedia.org/wiki/Package_management_system#Maintenance_of_configuration

Ch13: Software Delivery

15

3rd party PMS available available Available

PMS notification Notify PMS during
installation

Notify PMS
immediately after

installation

Notify PMS only after
first run of
application

Table 4-2

4.2 Package management on Windows

The Add/Remove Program feature for Windows is a built-in
primitive package management system. Though some may not
recognize it as one, it does come with all the basic functions and

characteristics a PMS should have. As a special applet, the Add or Remove Programs is stored
under the name appwiz.cpl in the SYSTEM32 folder. Windows Update handles only packages
distributed by Microsoft. The lack of support for updating packages from other vendors had
sparked development of many other PMS, most of them are open source programs, like
Appupdater written in Python and released under GNU General Public License (GPL).

Appupdater connects to a software repository which hosts a number of packages online. From
here, user will be able to view the basic information of a package such as its available version,
short description and its license type.

Software Development Tools and Technologies

16

To know more about a package, the user could click on the “Info” button to take a closer look at
the package and information of its previous versions.

Once the choice is made, the user can proceed to “check out” the package. By choosing either
installation mode

Ch13: Software Delivery

17

Upon clicking either of the buttons, the user will be prompted to choose a version to install.

While there are three modes available and self-explanatory, “Download” will download the
installer into local hard disk only; “Install Manually” will download the installer and execute it,
and let user take over from here; “Install” will automatically complete the installation process
with showing a progress bar, the installation will be done in the background.

The update and removing of a package will be carried out in similar manner.

Relying on the Registry as its backbone, Appupdater will identify a package by scanning through
registry and installation directory, then automactically detect the current version of all (selected)
packages and match them with the lastest version of its online software repositry to look out for
any outdated package.

4.3 Package management on Linux

When a system administrator wants to perform system maintenance or
package installation, with a bunch of tarballs, things are going to get
complicated. As we mentioned, a PMS is essential especially in Linux where
thousands of packages involve in the OS. Manual management, for example,
update or remove certain package without breaking the dependencies

among packages will be extremely difficult given the size and complexity of them.

Originally designed for Red Hat Linux, RPM is a recursive acronym for RPM Package
Management, shipped a number of Linux/UNIX distributions. Making use of the command line,
it simplifies the process of installation and removal of packages. Both precompiled binaries and
source code (included in SRPM, a front end package for RPM) file can be used by RPM for
installation. A simple line of command will complete the installation process.

rpm -i apache-1.3.14-3.i386.rpm

Admin access will be required for installation and maintenance work, as the user account with
administrator privilege and password. Though the process could look easy, problems could
arise especially when removing a package. Some packages could rely on each other to run

Software Development Tools and Technologies

18

properly, the relation is called dependency. In a system where thousands of packages are
installed, the dependency could get nested. In the case when a package depends on a certain
component of another package which gets replaced or gone missing during maintenance,
dependency hell arises.

As RPM maintains all the dependencies by having automatic build time evaluation, it will show a
warning when user try to remove a package which could break the dependency of other
packages. RPM keeps its own installation backend database in typical location such as
/var/lib/rpm using Berkeley DB. It contains metadata for all installed packages, indexed and
replicated for faster query response. Changes such as removal of a package can be reversed.
However, it does not do much on resolving dependency hell.

To deal with this problem, we can use Advanced Packaging Tool, APT. This set of tool rely on
package repository, somewhere you can retrieve and install software and it is usually hosted
over the network, to resolve, or rather, to avoid the dependency hell.

Through APT, a package can be downloaded and installed. When a package is getting installed,
APT will examine its dependencies. From there, APT will retrieve all components required to
satisfy the dependency requirement for it. Then during the installation process, the particular
package will be installed together with its required dependency. Therefore, a package will never
fail to start due to missing dependencies.

All information about packages available will be stored in /etc/apt/sources.list. This is the
location configuration file which tells the system where to locate the desired packages, in this
case, the repository. If necessary, certain packages previously containing the dependency will be
downgrade for conflict resolution. The repository does not just contain the latest version but all
versions available for installation, so that possible upgrade or downgrade can be arranged. To
ensure certain preferred package will not be modified, administrator can make use APT pinning
feature to ensure no further update will not be performed on it. Such pin can be found in the
system directory of /etc/apt/preferences.

The command line may not be appealing to certain user, several front ends of APT are made,
include graphic user interface, such as Synaptic Package Manager shown below.

Ch13: Software Delivery

19

4.4 Package management on Mac OS

Repository almost solves the dependency issues and Apple’s AppStore
completely get rids of the dependencies since each app becomes self-contained.
No dependency is needed when all apps come with its necessary components.

Throughout this section of the book chapter we will be discussing the Apple
Mac App Store as an app store example. Other app stores have similar

requirements and will change the development process in similar ways, but we chose to discuss
the Mac App Store because it is a popular, fast-growing platform with lots of opportunities for
mac developers.

Developing for the App Store is advantageous because it helps you as a software developer
mitigate the difficulties of manually distributing and marketing your software product. The App
Store is a unified environment where consumers can search for and download applications
simply in a process that is defined similarly for all applications.

The user is able to find applications that suit their needs whether or not they know the specific
application they want, so an app store helps your program to achieve accessibility.

As a new platform, there are several disadvantages. Unified environment and structure imply a
strict guideline to follow. For the Mac App Store, this translates to the App Store guidelines
published by Apple, made available to all registered Mac developers. Programming Language
and systems support. AppStores can sometimes require your application to be of a particular
format or developed in certain languages. The Mac AppStore largely only accepts applications
developed for Mac in Objective C using the officially supported IDE X-Code. Developing for an
AppStore requires submitting your application to the AppStore’s owner for review, much like
developing for a third party retailer. This review process can potentially impact your
development cycle and must be taken into consideration.

However, there are certain advantages to being well versed in the process behind the
development of applications for an AppStore, and the rest of this section will highlight the
general process of developing software for the Mac AppStore.

The review process for the Mac AppStore should be factored into the development cycle. The
old development cycle, depending on the development group, generally involves the identifying
of problems and conceptualization for solution, then developing the application and distributing
it to intended audience. When developing for AppStore, you will need to take the review process
into account. Typically, the review process for the Mac AppStore will take about one week or so,
but in some instances, especially if the app is focused on user-submitted content, the testing will
take longer and can take as long as 3 months.

The review process presents a difficulty for developers because the application that is
submitted for review is often a finalized release version, and any bugs detected after the release
can only be stamped out in the future as patches. If a more updated version of the application is
sent for review, the process is restarted. Hence very often developers will find that their
development process is stuck whilst their app is being reviewed.

Software Development Tools and Technologies

20

By designing the development cycle around the review process, instead of a fully finalized
version, development teams can send an almost final prototype program for review whilst their
team focus on stemming out bugs to prepare a first patch ready for final release.

The review process can sometimes be painful for developers, as Apple will contact the
development team if they find parts or functions in the program which they need clarifications
about. One way to reduce such incidents happening and to reduce the chance of getting the
application rejected is to fully and completely document the application. Another, more
recommended way, is to follow the Apple App Review Guidelines made available to all
registered developers. Whilst we cannot publish the full guidelines here, some of them are as
follows:

 Apps that crash/exhibit bugs/do not perform as advertised
 Apps that are set to automatically launch without users’ permission.
 Apps that use third party material without documented rights.
 Apps that misspell Apple products or services.
 Apps that change the native user element of Mac OSX.
 Apps that suggest Apple endorses the app.
 Apps with metadata that mentions the name of another computer platform.

And the full guidelines will be available to any fully registered Apple developer. Following the
Guidelines, although is no guarantee of a rejection-free Review process, can help the make the
process smoother for both yourself as the developer, and Apple as the reviewer. The faster the
review processes is over, the faster we can get on to do more important and complicated things,
so it is beneficial for developers to fully understand and utilize the Guidelines.

Even if the Guidelines are not accessible, Apple Developer portal available at
http://developer.apple.com/ contains documentation and best practices to help developers
pass the review even without the Guidelines.

Once you know this, and are ready to submit your program for Apple to review, you can do so as
follows.

 The Apple App Submission process can be divided into three parts. The first part is the
licensing process. The second part is the preparation of the IDE process. The third part
is the App packaging process.

 For the first part, you will need to do two important things. The first thing is to get the
Apple developer license. The license is USD$99 a year and allows you to develop and
deploy unlimited apps. The license is tied to your Apple ID, and your Apple ID is tied to
your access to everything Apple, so do not lose the password to that ID.

 The second thing to do in the licensing process is to generate the Certificate Signing
Request (CSR) for your application. Each application will have its own CSR which apple
must approve before you can send the app for review.

http://developer.apple.com/

Ch13: Software Delivery

21

Step 1: Licensing

The second part is the preparation step for the IDE. In this case our IDE will be the default
supported IDE XCode. The objective of this step is to first list your application into the
Developer Portal, and then configure settings in your XCode IDE in order to package the App
for distribution through the right medium

The first step is to create an App ID in the developer portal. This can be done by logging into
the Developer Portal with your Apple ID and submitting an ID for the App.

Secondly, in your XCode, you should create a provisioning file. The provisioning file is what
XCode will refer to when it wants to package the app for distribution. In this case for the
provisioning file we need to set the distribution platform to be AppStore.

Step 2: Prepare your IDE

The last part is to tidy up the packaging process. In XCode ensure that the distribution setup
is set to App Store, Ensure that the Code Signing Identity you prepared in step 1 is matched
into your provisioning profile, ensure that your identifier is the same as your App ID, then
apply binary build and submit the app to iTunes connect at
https://itunesconnect.apple.com/ and the process is completed.

https://itunesconnect.apple.com/

Software Development Tools and Technologies

22

Step 3: Packaging your App

A summary of the submission process is as follows:

The trend today for software distribution tends towards digital distribution, and the concept of
App Store as a centralized distributor will only become more and more valid. Having an
understanding of how the AppStore functions will help improve your employability and
marketability, giving you an edge in your technical job search.

5 CONCLUSION

In this chapter we have looked at Software Packaging and Delivery in context with the three
main platforms- Windows, MAC and Linux. We learnt how Java achieves portability through
four ways the four ways of distribution: through its own bytecode, through a collection of
bytecode known as Java Archives (JAR), embedded on webpages as Java applets, and finally, as
natively compiled, platform dependent applications. We also looked at what is installation and
how do the different platforms install applications and softwares; windows uses GUI with

Ch13: Software Delivery

23

executables to facilitate the installtion process, Linux uses the RPM and tarball, MAC has the
drag and drop feature for installing softwares and applications.

We have discussed what are Package Management Systems, their importance and necessity. For
Windows we discussed in detail AppUpdate, a 3rd party PMS; for Linux we discussed RPM and
for MAC we discussed AppStore, how it also works as a digital delivery media and how to
develop for it.

To better understand how the installation and Packagement Management systems work with
the Operating Systems in the background we need to understand how the OS stores its
configuration settings and how does it use them. Windows uses a centralized database called
Registry to store this information and softwares access and edit this database accordingly. MAC
uses multiple binary coded text files called Property Lists to store the configuration settings.

